on the above theories and the hyperfine splittings arising from C^{13} in natural abundance are in error

Table I
$\mathrm{Li}^{+}{ }^{+} \mathrm{TCNQ}{ }^{-}$Splitting Constants ${ }^{a}$

Position ${ }^{b}$ or splitting	-Calculated, ${ }^{\text {c }}$ oerstedHückel McLachlan		$\overbrace{\text { Ref. } 4} \text { Expt1, oersted- } \mathrm{C}^{12} \text { subsd }{ }^{\text {d }}$	
constant				
$A_{\text {N } 14}$			1.02	$1.009(\pm 0.005)$
$A_{\text {H }}$			1.44	$1.415(\pm 0.004)$
$\mathrm{C}^{13}(1)$	-3.11	-5.02	4.40	$1.52(\pm 0.04)$
$\mathrm{C}^{13}(2)$	+0.48	+0.79	0.62	
$\mathrm{C}^{13}(7)$	+5.23	+8.49	7.18	
$\mathrm{C}^{13}(9)$	-7.17	-8.44	6.38	$7.06(\pm 0.04)$

${ }^{a} g=2.00263 \pm 0.00005,10^{-4} M$ in tetrahydrofuran. ${ }^{b}$ See TCNQ structure for position numbering, ${ }^{c}$ See ref. 3 and 4 .
${ }^{d} g$ value and hyperfine splittings obtained by comparison in a dual cavity with a $10^{-4} M$ solution in THF of lithium tetracyanoethylenide whose $g=2.00270 \pm 0.00005$ and $A_{\mathrm{N}}=$ 1.574 .

We have observed in the unlabeled TCNQ^{-}spectrum two sets of low intensity lines. One set arises from C^{13} at position 9 . The other with one-half the signal intensity of that arising from position 9 has a splitting of 4.6 oersted. If the latter is due to C^{13} splitting, it must arise from the methylene carbons (i.e., 7, 8). We have been unable to observe any other resonances in the unlabeled TCNQ^{-}spectrum.

Table I shows that the C^{13} splitting constants for positions 1 and 9 differ from those previously assigned ${ }^{4}$ and from those calculated from theory. The difference is even more pronounced if the value of 4.6 oersted can be associated with the C^{13} splitting by position 7. One concludes that either (perhaps both) the current theory of C^{13} hyperfine splitting or spindensity calculation is inadequate and requires revision.

The two C^{13} enriched TCNQ anion radicals were synthesized as follows. For TCNQ enriched by C^{13} in position 1 (4) (Scheme I), ethyl β-iodopropionate was treated with potassium cyanide- C^{13} to give β ethoxycarbonyl propionitrile-1- C^{13} (I). Treatment of

Scheme I
Synthesis of TCNQ-1(4)-C ${ }^{13}$

I with ethanolic hydrogen chloride gave diethyl suc-cinate-1-C ${ }^{13}$ which was treated with sodium ethoxide in ether to give 2,5-bis(ethoxycarbonyl)-1,4-cyclo-hexanedione- C^{13} which was hydrolytically decarboxylated to 1,4-cyclohexanedione-1(4)-C ${ }^{13}$. The C^{13} labeled cyclohexanedione was converted to TCNQ-1(4)-C ${ }^{13}$ and LiTCNQ-1(4)-C ${ }^{13}$ by the usual procedures. ${ }^{5,6}$ Mass spectral analysis of CO_{2} result-
(5) D. S. Acker and W. R. Hertler, J. Am. Chem. Soc., 84, 3370 (1962).
(6) L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, and W. E. Mochel, ibid., 84, 3374 (1962).
ing from combustion of the labeled TCNQ gave a value for $\mathrm{C}^{13} / \mathrm{C}^{12}$ corresponding to $\sim 5 \% \mathrm{C}^{13}$ in each of positions 1 and 4, in excellent agreement with the expected value as well as with the relative e.s.r. line amplitudes.

TCNQ enriched by C^{13} in position $9(11,13,15)$ was prepared by the reaction of potassium cyanide- C^{13} with TCNQ to give $\mathrm{K}^{+} \mathrm{TCNQ}^{-} 9(11,13,15)-\mathrm{C}^{13}$ which was then oxidized to the correspondingly labeled TCNQ. ${ }^{7}$ Mass spectral analysis again gave a value for $\mathrm{C}^{13} / \mathrm{C}^{12}$ corresponding to $\sim 5 \% \mathrm{C}^{13}$ in each of the positions, in good agreement with relative es.r. line amplitudes.

[^0]Contribution No. 946 M. T. Jones
Central Research Department W. R. Hertler
E. I. du Pont de Nemours and Company Experimental Station Wilmington, Delaware

Received February 1, 1964

The Direct Synthesis of Amine Alanes

Sir:
In previous papers we have reported the use of the $\mathrm{Al}-\mathrm{H}_{2}$ reducing system for the synthesis of $\mathrm{NaAlH}_{4}^{1.2}$ and amine boranes. ${ }^{3}$ Now we wish to report the first successful direct synthesis of an amine alane, triethylenediamine alane, by reaction of aluminum and hydrogen in the presence of triethylenediamine at moderate temperature and pressure.

In a typical experiment 30 g . of triethylenediamine was dissolved in 100 ml . of tetrahydrofuran. To this solution was added approximately 6 g . of activated aluminum powder. ${ }^{2}$ The resulting mixture was heated for 6 hr . at 70° and $5000 \mathrm{p} . \mathrm{s} . \mathrm{i}$. hydrogen pressure. A light gray solid was isolated by filtration and analyzed for aluminum, hydrogen, and nitrogen. The nitrogen analysis was performed by potentiometric titration of the solution obtained on hydrolysis of the product, after removal of the $\mathrm{Al}(\mathrm{OH})_{3}$. Anal. Caled. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \cdot \mathrm{AlH}_{3}$: Al, $19.0 ; \mathrm{N}, 19.7 ; \mathrm{H}, 21.2$ mmoles/ g. Found: Al, 21.8 ; N, 19.1; H, 22.4 mmoles $/ \mathrm{g}$.

Deuterolysis of the product showed that 92.4% of the evolved gas was DH and 7.6% was D_{2}, indicating a low concentration of unreacted aluminum. The product is thermally stable to $>200^{\circ}$ and reacts violently with water. It is insoluble in the common organic solvents tested and for this reason no molecular weight determination has been made. However, it is speculated that the product is not monomeric, because of the difunctional nature of the amine. The ready formation
(1) E. C. Ashby (to Ethyl Corp.), French Patent $1,235,680$ (May 30, 1960).
(2) E. C. Ashby, Chem. Ind. (London), 208 (1962).
(3) E. C. Ashby and W. E. Foster, J. Am. Chem. Soc., 84, 3407 (1962).
of this amine alane from the elements in contrast to the difficulty of preparing monofunctional amine alanes is attributed to the heat of polymerization (or crystallization) of the product as well as to the basicity of the amine.

Preliminary studies show that other tertiary diamines, such as tetramethylethylenediamine, as well as secondary and primary amines react with aluminum and hydrogen to form active $\mathrm{N}-\mathrm{Al}-\mathrm{H}$ compounds.
Ethyl Corporation
E. C. Ashby

Baton Rouge, Louisiana
Received March 5, 1964

Oxidation of Vanadium(IV) by Chromium(VI) in Acidic Solution ${ }^{1}$

Sir:
This communication describes results of a kinetic study on the reaction of vanadium(IV) with chromium(VI) in acidic perchlorate solution, the stoichiometry and rate of which had not been described previously.

The reaction was studied spectrophotometrically at a single wave length, $3500 \AA$. Vanadium(IV) is essentially transparent at this wave length, and vanadium(V) has a molar absorbancy index of $140.61 . \mathrm{mole}^{-1} \mathrm{~cm} .^{-1}$. At the single acidity used in these studies, $0.005(0)$ $F \mathrm{HClO}_{4}$, the absorbancy index of chromium(VI) is 15541 . mole ${ }^{-1} \mathrm{~cm} .^{-1}$, a maximum. Both vanadium(V) and chromium(VI) obey Beer's law over at least 10 fold concentration ranges. There is no spectral evidence for any association of vanadium(V) and chromium(VI). The relatively rapid reaction of vanadium(IV) and chromium(VI) does not allow determination of whether any complex formation between these species occurs; it has been assumed here that vanadium(IV) interacts negligibly with chromium(VI). Under the present conditions of concentrations and temperature these species dominate: chromium(VI), ${ }^{2}$ hydrogen chromate ion HCrO_{4}^{-}; vanadium(IV), ${ }^{8}$ vanadyl ion VO^{2+}; and vanadium(V), ${ }^{4}$ pervanadyl ion $\mathrm{VO}_{2}{ }^{+}$.

The net equation for the reaction of vanadium(IV) and chromium(VI) in this reaction medium is

$$
3 \mathrm{VO}^{2+}+\mathrm{HCrO}_{4}^{-}+\mathrm{H}^{+}=3 \mathrm{VO}_{2}^{+}+\mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}
$$

The stoichiometry with regard to oxidation equivalents was established by examination of the equilibrium absorbance at $3500 \AA$. of solutions with a wide range of compositions. That Cr^{3+}, rather than a hydrolytic polymer, is the chromium(III) product has been assumed and has not yet been verified experimentally.

Preliminary examination of rate data suggested a one-term rate law in which a product, vanadium(V), retards the reaction. Correlation of observed rates and instantaneous concentrations led to this rate law expression at constant acid concentration

$$
\begin{equation*}
-\mathrm{d}\left[\mathrm{HCrO}_{4}^{-}\right] / \mathrm{d} t=k\left[\mathrm{VO}^{2+}\right]^{2}\left[\mathrm{HCrO}_{4}^{-}\right] /\left[\mathrm{VO}_{2}{ }^{+}\right] \tag{1}
\end{equation*}
$$

Precise linearity of an integrated form ${ }^{5}$ of eq. 1 over a large fraction of reaction together with constancy of

[^1]

Fig. 1.-Linear plots of the integrated form ${ }^{5}$ of eq. 1 illustrating conformity to the rate law given. The two runs shown are expt. no. $4(\bigcirc)$ and $5(\times)$ in Table I.
k from each run establishes that this rate equation holds for all experiments performed, which are listed in Table I. Figure 1 shows such plots for two typical runs. The concentration ranges these data represent amount to variations of ~ 6-fold in vanadium(V), ~ 20-fold in vanadium(IV), and ~ 8-fold in chromium(VI), at constant hydrogen ion concentration.

In the two experiments with added vanadium(V), the vanadium(V) stock solution contributed ca. 70% of the final acidity. To eliminate any effect due to this potential error, or due to any slow equilibration among hydrolyzed or polymeric vanadium(V) species, runs in which this same vanadium(V) concentration is generated by prior reaction were carried out. Thus the pairs 3,5 and 4,6 are really the same, except for chromium(III), which is without effect.

Table I
Experimentally Determined Values ${ }^{a}$ of the Rate Constant k

${ }^{a} 25.00^{\circ}, 0.00500 F \mathrm{HClO}_{4}, I=1.00 F\left(\right.$ with $\left.\mathrm{LiClO}_{4}\right)$.
In the reaction of iron(II) and chromium(VI) ${ }^{6}$ and in the reaction of chromium(III) and cerium(IV) ${ }^{7}$ these are the dominant terms: $k_{\mathrm{Fe}}\left[\mathrm{Fe}^{2+}\right]^{2}\left[\mathrm{HCrO}_{4}{ }^{-}\right] /\left[\mathrm{Fe}^{3+}\right]$ and $k_{\mathrm{Ce}}\left[\mathrm{Ce}^{\mathrm{IV}}\right]^{2}\left[\mathrm{Cr}^{3+}\right] /\left[\mathrm{Ce}^{1 \mathrm{II}}\right]$, respectively. These rate law forms are the exact analogs of the present findings. Thus the apparent mechanism for this three-equivalent change is

$$
\begin{aligned}
& \mathrm{V}^{\mathrm{IV}}+\mathrm{Cr}^{\mathrm{V}_{\mathrm{I}}} \underset{k_{z}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~V}^{\mathrm{V}}+\mathrm{Cr}^{\mathrm{v}} \\
& \mathrm{~V}^{\mathrm{V}}+\mathrm{Cr}^{\mathrm{v}} \underset{k_{4}}{\stackrel{k_{3}}{\rightleftarrows}} \mathrm{~V}^{\mathrm{v}}+\mathrm{Cr}^{1 \mathrm{~V}} \\
& \mathrm{~V}^{\mathrm{V}}+\mathrm{Cr}^{\mathrm{V}} \xrightarrow{k_{s}} \mathrm{~V}^{\mathrm{V}}+\mathrm{Cr}^{\mathrm{III}}
\end{aligned}
$$

[^2]
[^0]: (7) This method of labeling is analogous to that used in the preparation of cyano-labeled tetracyanoethylene-C ${ }^{14}$ [O. W. Webster, W Mahler, and R. E. Benson, ibid., 84, 3678 (1962) J.

[^1]: (1) Work performed in the Ames Laboratory of the U. S. Atomic Energy Commission, contribution no. 1467 .
 (2) J. Y.-P. Tong and E. L. King, J. Am. Chem. Soc., 75, 6180 (1953).
 (3) F. J. C. Rossotti and H. S. Rossotti, Acta Chem. Scand., 9, 1177 (1955)
 (4) F. J. C. Rossotti and H. Rossotti, ibid., 10, 957 (1956)
 (5) This complicated equation is analogous to eq. 9 of ref. 6 and eq. 4 of ref. 7.

[^2]: (6) J. H. Espenson and E. L. King, J. Am. Chem. Soc., 88, 3328 (1963).
 (7) J. Y.-P. Tong and E. L. King, ibid., 82, 3805 (1960),

